Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Eye (Lond) ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538779

RESUMEN

Programmed axon death is a druggable pathway of axon degeneration that has garnered considerable interest from pharmaceutical companies as a promising therapeutic target for various neurodegenerative disorders. In this review, we highlight mechanisms through which this pathway is activated in the retina and optic nerve, and discuss its potential significance for developing therapies for eye disorders and beyond. At the core of programmed axon death are two enzymes, NMNAT2 and SARM1, with pivotal roles in NAD metabolism. Extensive preclinical data in disease models consistently demonstrate remarkable, and in some instances, complete and enduring neuroprotection when this mechanism is targeted. Findings from animal studies are now being substantiated by genetic human data, propelling the field rapidly toward clinical translation. As we approach the clinical phase, the selection of suitable disorders for initial clinical trials targeting programmed axon death becomes crucial for their success. We delve into the multifaceted roles of programmed axon death and NAD metabolism in retinal and optic nerve disorders. We discuss the role of SARM1 beyond axon degeneration, including its potential involvement in neuronal soma death and photoreceptor degeneration. We also discuss genetic human data and environmental triggers of programmed axon death. Lastly, we touch upon potential therapeutic approaches targeting NMNATs and SARM1, as well as the nicotinamide trials for glaucoma. The extensive literature linking programmed axon death to eye disorders, along with the eye's suitability for drug delivery and visual assessments, makes retinal and optic nerve disorders strong contenders for early clinical trials targeting programmed axon death.

2.
Molecules ; 29(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38398599

RESUMEN

Here, we report an adapted protocol using the Promega NAD/NADH-Glo™ Assay kit. The assay normally allows quantification of trace amounts of both oxidized and reduced forms of nicotinamide adenine dinucleotide (NAD) by enzymatic cycling, but we now show that the NAD analog 3-acetylpyridine adenine dinucleotide (AcPyrAD) also acts as a substrate for this enzyme-cycling assay. In fact, AcPyrAD generates amplification signals of a larger amplitude than those obtained with NAD. We exploited this finding to devise and validate a novel method for assaying the base-exchange activity of SARM1 in reactions containing NAD and an excess of the free base 3-acetylpyridine (AcPyr), where the product is AcPyrAD. We then used this assay to study competition between AcPyr and other free bases to rank the preference of SARM1 for different base-exchange substrates, identifying isoquinoline as a highly effect substrate that completely outcompetes even AcPyr. This has significant advantages over traditional HPLC methods for assaying SARM1 base exchange as it is rapid, sensitive, cost-effective, and easily scalable. This could represent a useful tool given current interest in the role of SARM1 base exchange in programmed axon death and related human disorders. It may also be applicable to other multifunctional NAD glycohydrolases (EC 3.2.2.6) that possess similar base-exchange activity.


Asunto(s)
Proteínas del Citoesqueleto , NAD , Humanos , Cromatografía Líquida de Alta Presión , Proteínas del Dominio Armadillo
3.
Mol Neurodegener ; 19(1): 13, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38282024

RESUMEN

BACKGROUND: Bioenergetic maladaptations and axonopathy are often found in the early stages of neurodegeneration. Nicotinamide adenine dinucleotide (NAD), an essential cofactor for energy metabolism, is mainly synthesized by Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) in CNS neurons. NMNAT2 mRNA levels are reduced in the brains of Alzheimer's, Parkinson's, and Huntington's disease. Here we addressed whether NMNAT2 is required for axonal health of cortical glutamatergic neurons, whose long-projecting axons are often vulnerable in neurodegenerative conditions. We also tested if NMNAT2 maintains axonal health by ensuring axonal ATP levels for axonal transport, critical for axonal function. METHODS: We generated mouse and cultured neuron models to determine the impact of NMNAT2 loss from cortical glutamatergic neurons on axonal transport, energetic metabolism, and morphological integrity. In addition, we determined if exogenous NAD supplementation or inhibiting a NAD hydrolase, sterile alpha and TIR motif-containing protein 1 (SARM1), prevented axonal deficits caused by NMNAT2 loss. This study used a combination of techniques, including genetics, molecular biology, immunohistochemistry, biochemistry, fluorescent time-lapse imaging, live imaging with optical sensors, and anti-sense oligos. RESULTS: We provide in vivo evidence that NMNAT2 in glutamatergic neurons is required for axonal survival. Using in vivo and in vitro studies, we demonstrate that NMNAT2 maintains the NAD-redox potential to provide "on-board" ATP via glycolysis to vesicular cargos in distal axons. Exogenous NAD+ supplementation to NMNAT2 KO neurons restores glycolysis and resumes fast axonal transport. Finally, we demonstrate both in vitro and in vivo that reducing the activity of SARM1, an NAD degradation enzyme, can reduce axonal transport deficits and suppress axon degeneration in NMNAT2 KO neurons. CONCLUSION: NMNAT2 ensures axonal health by maintaining NAD redox potential in distal axons to ensure efficient vesicular glycolysis required for fast axonal transport.


Asunto(s)
Transporte Axonal , NAD , Nicotinamida-Nucleótido Adenililtransferasa , Animales , Ratones , Adenosina Trifosfato/metabolismo , Proteínas del Dominio Armadillo/metabolismo , Axones/metabolismo , Proteínas del Citoesqueleto/metabolismo , Glucólisis , Homeostasis , NAD/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo
4.
J Cell Sci ; 136(18)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37642648

RESUMEN

Myelinating Schwann cell (SC)-dorsal root ganglion (DRG) neuron cocultures are an important technique for understanding cell-cell signalling and interactions during peripheral nervous system (PNS) myelination, injury, and regeneration. Although methods using rat SCs and neurons or mouse DRG explants are commonplace, there are no established protocols for compartmentalised myelinating cocultures with dissociated mouse cells. There consequently is a need for a coculture protocol that allows separate genetic manipulation of mouse SCs or neurons, or use of cells from different transgenic animals to complement in vivo mouse experiments. However, inducing myelination of dissociated mouse SCs in culture is challenging. Here, we describe a new method to coculture dissociated mouse SCs and DRG neurons in microfluidic chambers and induce robust myelination. Cocultures can be axotomised to study injury and used for drug treatments, and cells can be lentivirally transduced for live imaging. We used this model to investigate axon degeneration after traumatic axotomy and find that SCs, irrespective of myelination status, are axo-protective. At later timepoints after injury, live imaging of cocultures shows that SCs break up, ingest and clear axonal debris.


Asunto(s)
Neuronas , Células de Schwann , Animales , Ratones , Ratas , Técnicas de Cocultivo , Axones , Animales Modificados Genéticamente
5.
Res Sq ; 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37292715

RESUMEN

Background: Bioenergetic maladaptations and axonopathy are often found in the early stages of neurodegeneration. Nicotinamide adenine dinucleotide (NAD), an essential cofactor for energy metabolism, is mainly synthesized by Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) in CNS neurons. NMNAT2 mRNA levels are reduced in the brains of Alzheimer's, Parkinson's, and Huntington's disease. Here we addressed whether NMNAT2 is required for axonal health of cortical glutamatergic neurons, whose long-projecting axons are often vulnerable in neurodegenerative conditions. We also tested if NMNAT2 maintains axonal health by ensuring axonal ATP levels for axonal transport, critical for axonal function. Methods: We generated mouse and cultured neuron models to determine the impact of NMNAT2 loss from cortical glutamatergic neurons on axonal transport, energetic metabolism, and morphological integrity. In addition, we determined if exogenous NAD supplementation or inhibiting a NAD hydrolase, sterile alpha and TIR motif-containing protein 1 (SARM1), prevented axonal deficits caused by NMNAT2 loss. This study used a combination of genetics, molecular biology, immunohistochemistry, biochemistry, fluorescent time-lapse imaging, live imaging with optical sensors, and anti-sense oligos. Results: We provide in vivo evidence that NMNAT2 in glutamatergic neurons is required for axonal survival. Using in vivo and in vitro studies, we demonstrate that NMNAT2 maintains the NAD-redox potential to provide "on-board" ATP via glycolysis to vesicular cargos in distal axons. Exogenous NAD+ supplementation to NMNAT2 KO neurons restores glycolysis and resumes fast axonal transport. Finally, we demonstrate both in vitro and in vivo that reducing the activity of SARM1, an NAD degradation enzyme, can reduce axonal transport deficits and suppress axon degeneration in NMNAT2 KO neurons. Conclusion: NMNAT2 ensures axonal health by maintaining NAD redox potential in distal axons to ensure efficient vesicular glycolysis required for fast axonal transport.

6.
Front Cell Neurosci ; 17: 1158388, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091921

RESUMEN

Since SARM1 mutations have been identified in human neurological disease, SARM1 inhibition has become an attractive therapeutic strategy to preserve axons in a variety of disorders of the peripheral (PNS) and central nervous system (CNS). While SARM1 has been extensively studied in neurons, it remains unknown whether SARM1 is present and functional in myelinating glia? This is an important question to address. Firstly, to identify whether SARM1 dysfunction in other cell types in the nervous system may contribute to neuropathology in SARM1 dependent diseases? Secondly, to ascertain whether therapies altering SARM1 function may have unintended deleterious impacts on PNS or CNS myelination? Surprisingly, we find that oligodendrocytes express sarm1 mRNA in the zebrafish spinal cord and that SARM1 protein is readily detectable in rodent oligodendrocytes in vitro and in vivo. Furthermore, activation of endogenous SARM1 in cultured oligodendrocytes induces rapid cell death. In contrast, in peripheral glia, SARM1 protein is not detectable in Schwann cells and satellite glia in vivo and sarm1/Sarm1 mRNA is detected at very low levels in Schwann cells, in vivo, in zebrafish and mouse. Application of specific SARM1 activators to cultured mouse Schwann cells does not induce cell death and nicotinamide adenine dinucleotide (NAD) levels remain unaltered suggesting Schwann cells likely contain no functionally relevant levels of SARM1. Finally, we address the question of whether SARM1 is required for myelination or myelin maintenance. In the zebrafish and mouse PNS and CNS, we show that SARM1 is not required for initiation of myelination and myelin sheath maintenance is unaffected in the adult mouse nervous system. Thus, strategies to inhibit SARM1 function to treat neurological disease are unlikely to perturb myelination in humans.

7.
Neurosci Res ; 197: 18-24, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36657725

RESUMEN

The past 20 years of research on axon degeneration has revealed fine details on how NAD biology controls axonal survival. Extensive data demonstrate that the NAD precursor NMN binds to and activates the pro-degenerative enzyme SARM1, so a failure to convert sufficient NMN into NAD leads to toxic NMN accumulation and axon degeneration. This involvement of NMN brings the axon degeneration field to an unexpected overlap with research into ageing and extending healthy lifespan. A decline in NAD levels throughout life, at least in some tissues, is believed to contribute to age-related functional decay and boosting NAD production with supplementation of NMN or other NAD precursors has gained attention as a potential anti-ageing therapy. Recent years have witnessed an influx of NMN-based products and related molecules on the market, sold as food supplements, with many people taking these supplements daily. While several clinical trials are ongoing to check the safety profiles and efficacy of NAD precursors, sufficient data to back their therapeutic use are still lacking. Here, we discuss NMN supplementation, SARM1 and anti-ageing strategies, with an important question in mind: considering that NMN accumulation can lead to axon degeneration, how is this compatible with its beneficial effect in ageing and are there circumstances in which NMN supplementation could become harmful?


Asunto(s)
Axones , NAD , Humanos , NAD/metabolismo , Axones/metabolismo , Envejecimiento
8.
Elife ; 112022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36476387

RESUMEN

Axon degeneration contributes to the disruption of neuronal circuit function in diseased and injured nervous systems. Severed axons degenerate following the activation of an evolutionarily conserved signaling pathway, which culminates in the activation of SARM1 in mammals to execute the pathological depletion of the metabolite NAD+. SARM1 NADase activity is activated by the NAD+ precursor nicotinamide mononucleotide (NMN). In mammals, keeping NMN levels low potently preserves axons after injury. However, it remains unclear whether NMN is also a key mediator of axon degeneration and dSarm activation in flies. Here, we demonstrate that lowering NMN levels in Drosophila through the expression of a newly generated prokaryotic NMN-Deamidase (NMN-D) preserves severed axons for months and keeps them circuit-integrated for weeks. NMN-D alters the NAD+ metabolic flux by lowering NMN, while NAD+ remains unchanged in vivo. Increased NMN synthesis by the expression of mouse nicotinamide phosphoribosyltransferase (mNAMPT) leads to faster axon degeneration after injury. We also show that NMN-induced activation of dSarm mediates axon degeneration in vivo. Finally, NMN-D delays neurodegeneration caused by loss of the sole NMN-consuming and NAD+-synthesizing enzyme dNmnat. Our results reveal a critical role for NMN in neurodegeneration in the fly, which extends beyond axonal injury. The potent neuroprotection by reducing NMN levels is similar to the interference with other essential mediators of axon degeneration in Drosophila.


Asunto(s)
Drosophila , Mononucleótido de Nicotinamida , Animales , Ratones , Drosophila/metabolismo , Mononucleótido de Nicotinamida/metabolismo , NAD/metabolismo , Axones/fisiología , Neuronas/fisiología , Mamíferos/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo
9.
Neurotherapeutics ; 19(4): 1133-1144, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207571

RESUMEN

This review addresses the longstanding debate over whether amyotrophic lateral sclerosis (ALS) is a 'dying back' or 'dying forward' disorder in the light of new gene identifications and the increased understanding of mechanisms of action for previously identified ALS genes. While the topological pattern of pathology in animal models, and more anecdotally in patients is indeed 'dying back', this review discusses how this fits with the fact that many of the major initiating events are thought to occur within the soma. It also discusses how widely varying ALS risk factors, including some impacting axons directly, may combine to drive a common pathway involving TAR DNA binding protein 43 (TDP-43) and neuromuscular junction (NMJ) denervation. The emerging association between sterile alpha and TIR motif-containing 1 (SARM1), a protein so far mostly associated with axon degeneration, and sporadic ALS is another major theme. The strengths and limitations of the current evidence supporting an association are considered, along with ways in which SARM1 could become activated in ALS. The final section addresses SARM1-based therapies along with the prospects for targeting other axonal steps in ALS pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral , Animales , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/terapia , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Axones/patología , Proteínas de Unión al ADN/metabolismo , Biología
10.
Sci Rep ; 12(1): 13846, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35974060

RESUMEN

SARM1 is a central executioner of programmed axon death, and this role requires intrinsic NAD(P)ase or related enzyme activity. A complete absence of SARM1 robustly blocks axon degeneration in mice, but even a partial depletion confers meaningful protection. Since axon loss contributes substantially to the onset and progression of multiple neurodegenerative disorders, lower inherent SARM1 activity is expected to reduce disease susceptibility in some situations. We, therefore, investigated whether there are naturally occurring SARM1 alleles within the human population that encode SARM1 variants with loss-of-function. Out of the 18 natural SARM1 coding variants we selected as candidates, we found that 10 display loss-of-function in three complimentary assays: they fail to robustly deplete NAD in transfected HEK 293T cells; they lack constitutive and NMN-induced NADase activity; and they fail to promote axon degeneration in primary neuronal cultures. Two of these variants are also able to block axon degeneration in primary culture neurons in the presence of endogenous, wild-type SARM1, indicative of dominant loss-of-function. These results demonstrate that SARM1 loss-of-function variants occur naturally in the human population, and we propose that carriers of these alleles will have different degrees of reduced susceptibility to various neurological conditions.


Asunto(s)
Proteínas del Dominio Armadillo , Axones , Proteínas del Citoesqueleto , NAD , Proteínas del Dominio Armadillo/genética , Proteínas del Citoesqueleto/genética , Células HEK293 , Humanos , Neuronas
11.
J Anat ; 241(5): 1211-1218, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35728923

RESUMEN

Neurological disorders are prevalent in horses, but their study is challenging due to anatomic constraints and the large body size; very few host-specific in vitro models have been established to study these types of diseases, particularly from adult donor tissue. Here we report the generation of primary neuronal dorsal root ganglia (DRG) cultures from adult horses: the mixed, dissociated cultures, containing neurons and glial cells, remained viable for at least 90 days. Similar to DRG neurons in vivo, cultured neurons varied in size, and they developed long neurites. The mitochondrial movement was detected in cultured cells and was significantly slower in glial cells compared to DRG-derived neurons. In addition, mitochondria were more elongated in glial cells than those in neurons. Our culture model will be a useful tool to study the contribution of axonal transport defects to specific neurodegenerative diseases in horses as well as comparative studies aimed at evaluating species-specific differences in axonal transport and survival.


Asunto(s)
Transporte Axonal , Ganglios Espinales , Animales , Células Cultivadas , Caballos , Neuritas/fisiología , Neuronas
12.
Front Mol Neurosci ; 15: 860410, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35493328

RESUMEN

Zika virus (ZIKV) is a neurotropic flavivirus recently linked to congenital ZIKV syndrome in children and encephalitis and Guillain-Barré syndrome in adults. Neurotropic viruses often use axons to traffic to neuronal or glial cell somas where they either remain latent or replicate and proceed to infect new cells. Consequently, it has been suggested that axon degeneration could represent an evolutionarily conserved mechanism to limit viral spread. Whilst it is not known if ZIKV transits in axons, we previously reported that ZIKV infection of glial cells in a murine spinal cord-derived cell culture model of the CNS is associated with a profound loss of neuronal cell processes. This, despite that postmitotic neurons are relatively refractory to infection and death. Here, we tested the hypothesis that ZIKV-associated degeneration of neuronal processes is dependent on activation of Sterile alpha and armadillo motif-containing protein 1 (SARM1), an NADase that acts as a central executioner in a conserved axon degeneration pathway. To test this, we infected wild type and Sarm1 homozygous or heterozygous null cell cultures with ZIKV and examined NAD+ levels as well as the survival of neurons and their processes. Unexpectedly, ZIKV infection led to a rapid SARM1-independent reduction in NAD+. Nonetheless, the subsequent profound loss of neuronal cell processes was SARM1-dependent and was preceded by early changes in the appearance of ß-tubulin III staining. Together, these data identify a role for SARM1 in the pathogenesis of ZIKV infection, which may reflect SARM1's conserved prodegenerative function, independent of its NADase activity.

13.
iScience ; 25(2): 103812, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35198877

RESUMEN

SARM1 is an NAD(P) glycohydrolase and TLR adapter with an essential, prodegenerative role in programmed axon death (Wallerian degeneration). Like other NAD(P)ases, it catalyzes multiple reactions that need to be fully investigated. Here, we compare these multiple activities for recombinant human SARM1, human CD38, and Aplysia californica ADP ribosyl cyclase. SARM1 has the highest transglycosidation (base exchange) activity at neutral pH and with some bases this dominates NAD(P) hydrolysis and cyclization. All SARM1 activities, including base exchange at neutral pH, are activated by an increased NMN:NAD ratio, at physiological levels of both metabolites. SARM1 base exchange occurs also in DRG neurons and is thus a very likely physiological source of calcium-mobilizing agent NaADP. Finally, we identify regulation by free pyridines, NADP, and nicotinic acid riboside (NaR) on SARM1, all of therapeutic interest. Understanding which specific SARM1 function(s) is responsible for axon degeneration is essential for its targeting in disease.

14.
Trends Neurosci ; 45(1): 53-63, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34852932

RESUMEN

Mitochondrial failure has long been associated with programmed axon death (Wallerian degeneration, WD), a widespread and potentially preventable mechanism of axon degeneration. While early findings in axotomised axons indicated that mitochondria are involved during the execution steps of this pathway, recent studies suggest that in addition, mitochondrial dysfunction can initiate programmed axon death without physical injury. As mitochondrial dysfunction is associated with disorders involving early axon loss, including Parkinson's disease, peripheral neuropathies, and multiple sclerosis, the findings that programmed axon death is activated by mitochondrial impairment could indicate the involvement of druggable mechanisms whose disruption may protect axons in such diseases. Here, we review the latest developments linking mitochondrial dysfunction to programmed axon death and discuss their implications for injury and disease.


Asunto(s)
Enfermedades del Sistema Nervioso Periférico , Proteínas del Dominio Armadillo/metabolismo , Axones/patología , Proteínas del Citoesqueleto/metabolismo , Humanos , Mitocondrias/metabolismo , Enfermedades del Sistema Nervioso Periférico/metabolismo , Enfermedades del Sistema Nervioso Periférico/patología , Degeneración Walleriana/metabolismo , Degeneración Walleriana/patología
15.
Elife ; 102021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34870595

RESUMEN

Axon loss underlies symptom onset and progression in many neurodegenerative disorders. Axon degeneration in injury and disease is promoted by activation of the NAD-consuming enzyme SARM1. Here, we report a novel activator of SARM1, a metabolite of the pesticide and neurotoxin vacor. Removal of SARM1 completely rescues mouse neurons from vacor-induced neuron and axon death in vitro and in vivo. We present the crystal structure of the Drosophila SARM1 regulatory domain complexed with this activator, the vacor metabolite VMN, which as the most potent activator yet known is likely to support drug development for human SARM1 and NMNAT2 disorders. This study indicates the mechanism of neurotoxicity and pesticide action by vacor, raises important questions about other pyridines in wider use today, provides important new tools for drug discovery, and demonstrates that removing SARM1 can robustly block programmed axon death induced by toxicity as well as genetic mutation.


Asunto(s)
Proteínas del Dominio Armadillo/genética , Axones/patología , Proteínas del Citoesqueleto/genética , Degeneración Nerviosa/fisiopatología , Neurotoxinas/farmacología , Compuestos de Fenilurea/farmacología , Animales , Proteínas del Dominio Armadillo/metabolismo , Axones/efectos de los fármacos , Proteínas del Citoesqueleto/metabolismo , Femenino , Masculino , Ratones , Degeneración Nerviosa/inducido químicamente , Rodenticidas/farmacología
16.
Elife ; 102021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34796871

RESUMEN

SARM1, a protein with critical NADase activity, is a central executioner in a conserved programme of axon degeneration. We report seven rare missense or in-frame microdeletion human SARM1 variant alleles in patients with amyotrophic lateral sclerosis (ALS) or other motor nerve disorders that alter the SARM1 auto-inhibitory ARM domain and constitutively hyperactivate SARM1 NADase activity. The constitutive NADase activity of these seven variants is similar to that of SARM1 lacking the entire ARM domain and greatly exceeds the activity of wild-type SARM1, even in the presence of nicotinamide mononucleotide (NMN), its physiological activator. This rise in constitutive activity alone is enough to promote neuronal degeneration in response to otherwise non-harmful, mild stress. Importantly, these strong gain-of-function alleles are completely patient-specific in the cohorts studied and show a highly significant association with disease at the single gene level. These findings of disease-associated coding variants that alter SARM1 function build on previously reported genome-wide significant association with ALS for a neighbouring, more common SARM1 intragenic single nucleotide polymorphism (SNP) to support a contributory role of SARM1 in these disorders. A broad phenotypic heterogeneity and variable age-of-onset of disease among patients with these alleles also raises intriguing questions about the pathogenic mechanism of hyperactive SARM1 variants.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , NAD+ Nucleosidasa/metabolismo , Adulto , Anciano , Alelos , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteínas del Dominio Armadillo , Proteínas del Citoesqueleto , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Enfermedad de la Neurona Motora/genética , Enfermedad de la Neurona Motora/metabolismo , Mononucleótido de Nicotinamida/metabolismo
18.
Neurotherapeutics ; 18(4): 2200-2221, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34595734

RESUMEN

Since Waller and Cajal in the nineteenth and early twentieth centuries, laboratory traumatic peripheral nerve injury studies have provided great insight into cellular and molecular mechanisms governing axon degeneration and the responses of Schwann cells, the major glial cell type of peripheral nerves. It is now evident that pathways underlying injury-induced axon degeneration and the Schwann cell injury-specific state, the repair Schwann cell, are relevant to many inherited and acquired disorders of peripheral nerves. This review provides a timely update on the molecular understanding of axon degeneration and formation of the repair Schwann cell. We discuss how nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) and sterile alpha TIR motif containing protein 1 (SARM1) are required for axon survival and degeneration, respectively, how transcription factor c-JUN is essential for the Schwann cell response to nerve injury and what each tells us about disease mechanisms and potential therapies. Human genetic association with NMNAT2 and SARM1 strongly suggests aberrant activation of programmed axon death in polyneuropathies and motor neuron disorders, respectively, and animal studies suggest wider involvement including in chemotherapy-induced and diabetic neuropathies. In repair Schwann cells, cJUN is aberrantly expressed in a wide variety of human acquired and inherited neuropathies. Animal models suggest it limits axon loss in both genetic and traumatic neuropathies, whereas in contrast, Schwann cell secreted Neuregulin-1 type 1 drives onion bulb pathology in CMT1A. Finally, we discuss opportunities for drug-based and gene therapies to prevent axon loss or manipulate the repair Schwann cell state to treat acquired and inherited neuropathies and neuronopathies.


Asunto(s)
Proteínas del Dominio Armadillo , Traumatismos de los Nervios Periféricos , Animales , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Axones/fisiología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/terapia
19.
Front Mol Biosci ; 8: 703532, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34307460

RESUMEN

Axon degeneration represents a pathological feature of many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease where axons die before the neuronal soma, and axonopathies, such as Charcot-Marie-Tooth disease and hereditary spastic paraplegia. Over the last two decades, it has slowly emerged that a central signaling pathway forms the basis of this process in many circumstances. This is an axonal NAD-related signaling mechanism mainly regulated by the two key proteins with opposing roles: the NAD-synthesizing enzyme NMNAT2, and SARM1, a protein with NADase and related activities. The crosstalk between the axon survival factor NMNAT2 and pro-degenerative factor SARM1 has been extensively characterized and plays an essential role in maintaining the axon integrity. This pathway can be activated in necroptosis and in genetic, toxic or metabolic disorders, physical injury and neuroinflammation, all leading to axon pathology. SARM1 is also known to be involved in regulating innate immunity, potentially linking axon degeneration to the response to pathogens and intercellular signaling. Understanding this NAD-related signaling mechanism enhances our understanding of the process of axon degeneration and enables a path to the development of drugs for a wide range of neurodegenerative diseases.

20.
Brain Commun ; 3(2): fcab114, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34136812

RESUMEN

Amyotrophic lateral sclerosis and frontotemporal dementia are overlapping diseases in which MRI reveals brain structural changes in advance of symptom onset. Recapitulating these changes in preclinical models would help to improve our understanding of the molecular causes underlying regionally selective brain atrophy in early disease. We therefore investigated the translational potential of the TDP-43Q331K knock-in mouse model of amyotrophic lateral sclerosis-frontotemporal dementia using MRI. We performed in vivo MRI of TDP-43Q331K knock-in mice. Regions of significant volume change were chosen for post-mortem brain tissue analyses. Ex vivo computed tomography was performed to investigate skull shape. Parvalbumin neuron density was quantified in post-mortem amyotrophic lateral sclerosis frontal cortex. Adult mutants demonstrated parenchymal volume reductions affecting the frontal lobe and entorhinal cortex in a manner reminiscent of amyotrophic lateral sclerosis-frontotemporal dementia. Subcortical, cerebellar and brain stem regions were also affected in line with observations in pre-symptomatic carriers of mutations in C9orf72, the commonest genetic cause of both amyotrophic lateral sclerosis and frontotemporal dementia. Volume loss was also observed in the dentate gyrus of the hippocampus, along with ventricular enlargement. Immunohistochemistry revealed reduced parvalbumin interneurons as a potential cellular correlate of MRI changes in mutant mice. By contrast, microglia was in a disease activated state even in the absence of brain volume loss. A reduction in immature neurons was found in the dentate gyrus, indicative of impaired adult neurogenesis, while a paucity of parvalbumin interneurons in P14 mutant mice suggests that TDP-43Q331K disrupts neurodevelopment. Computerized tomography imaging showed altered skull morphology in mutants, further suggesting a role for TDP-43Q331K in development. Finally, analysis of human post-mortem brains confirmed a paucity of parvalbumin interneurons in the prefrontal cortex in sporadic amyotrophic lateral sclerosis and amyotrophic lateral sclerosis linked to C9orf72 mutations. Regional brain MRI changes seen in human amyotrophic lateral sclerosis-frontotemporal dementia are recapitulated in TDP-43Q331K knock-in mice. By marrying in vivo imaging with targeted histology, we can unravel cellular and molecular processes underlying selective brain vulnerability in human disease. As well as helping to understand the earliest causes of disease, our MRI and histological markers will be valuable in assessing the efficacy of putative therapeutics in TDP-43Q331K knock-in mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA